Las GPUs y el machine learning

Uno de los factores que más ha impulsado el deep learning en los últimos años ha sido el uso de las GPUs (graphics processing unit) para acelerar el entrenamiento y despliegue de los algoritmos. Las GPUs son circuitos electrónicos, popularizadas por Nvidia y especializadas en procesado de imágenes y gráficos. Cuentan con una estructura paralela... Seguir leyendo →

Ejemplo de Word Embeddings con Gensim

En posts anteriores vimos como las representaciones distribuidas permiten extraer mucha información de las palabras y mejorar el rendimiento de las aplicaciones de procesamiento de lenguaje natural. Uno de los modelos más usados es Word2vec, creado en 2013 por Tomas Mikolov en Google, que se basa en redes neuronales de varias capas y tiene dos... Seguir leyendo →

Teoría de la Información en Deep Learning

Cuando hablábamos sobre información relevante y suficiente en machine learning describíamos el método del cuello de botella de la información (information bottleneck method) de Tishby. El método calcula cuánto resumir o reducir la variable X preservando la máxima información sobre la variable relevante objetivo Y usando la información mutua. En los últimos años Tishby y... Seguir leyendo →

Blog de WordPress.com.

Subir ↑